
Introduction

Litter decomposition is a fundamental global biogeo-
chemical process. On the one hand, it is an important com-
ponent of the global carbon (C) cycle by which carbon
fixed during photosynthesis is returned to the atmosphere.
On the other hand, perhaps more importantly, it plays a vital
role in the recycling of nutrients to soil and plant commu-
nities. During the process of litter decomposition, dead
plant materials are broken down into plant and microbe
available nutrients, inorganic forms of C, and stable organ-
ic matter [1]. Hence, changes in the rates of decomposition
can have profound effects on ecosystem attributes, such as

productivity, plant species composition, and food-chain
dynamics [2, 3]. Climate and litter chemistry are thought to
be the primary drivers of litter decomposition and nutrient
release [4]. Across multiple types of ecosystems, tempera-
ture, indices of water availability, and measures of litter
quality such as nitrogen (N) availability, lignin content, or
the lignin:N ratio, have important implications for the rates
of mass and nutrient loss [5-7]. 

Climate has a direct effect on litter decomposition due
to the effects of temperature and moisture. Generally, the
litter decomposition rate increases with increasing temper-
ature [8]. Temperature is generally considered the primary
limiting factor, especially in high latitude and altitude
ecosystems, and there is evidence that even a small increase
in temperature could enhance decomposition activity and
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Abstract

Litter decomposition is a fundamental ecosystem process, and climate and litter chemistry strongly con-

trol rates of litter decay. In this work, three forests along an elevation gradient on the eastern slope of

Sergyemla Mountain were selected to compare litter decomposition and chemical fraction loss rates, and fur-

ther to evaluate the effects of environmental factors and litter chemistry on the litter decomposition process.

The leaf litter decomposition coefficient of the mixed conifer and broadleaf forest (MCBF, 3,169 m a.s.l.),

sclerophyllous evergreen broadleaf forest (SEBF, 3,453 m a.s.l.), and subalpine dark coniferous forest (SDCF,

3,957 m a.s.l.) sites were 0.04, 0.03, and 0.02 month-1, respectively. The litter mass loss at the MCBF site sig-

nificantly correlated with litter quality, but that of the SEBF and the SDCF sites did not. In addition, there was

a significant positive relationship between the litter mass loss and temperature along the elevation gradients.

This study demonstrates that the litter decomposition rate decreases with increasing altitude along the eleva-

tion gradient. Climate is the key factor influencing litter decay across environmental gradients, but litter qual-

ity also affects decomposition rates in low-elevation forests.
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the release of CO2 from dead organic matter in these soils
[9, 10]. Water availability affects the rates of mass loss and
nutrient release primarily by affecting the activity of the
decomposer community [11]. In addition, precipitation can
control the physical process of leaching, with greater rain-
fall accelerating the breakdown of surface litter and mass
loss in the initial stage of the decay process [12]. In warm,
moist conditions soluble litter substrates may be decom-
posed more rapidly than in cool, drought conditions, result-
ing in the higher accumulation of recalcitrant substances in
warm rather than cool climates [13]. Therefore, climate fac-
tors such as mean temperature and precipitation or com-
bined indices that incorporate both temperature and precip-
itation, such as actual evapotranspiration (AET), potential
evapotranspiration (PET), and the climate decomposition
index (CDI), are generally the best predictors of decompo-
sition on regional and global scales [14, 15].

Although climate conditions usually have a direct influ-
ence on plant litter decomposition, they also have an indi-
rect effect through the climatic impact on litter chemistry
[10]. Recently, it has been shown that the magnitude of
species-driven variation in litter decomposition rates is
much larger than previously thought and even greater than
the climate-driven variation [2]. Litter quality, especially
the chemical characteristics of the organic constituents, is
the prevailing endogenous control of the litter decomposi-
tion rate at the ecosystem level [16]. In general, decompo-
sition rates increase with a decrease in the ratio of C to N
(C:N ratio), which is therefore an important indicator of lit-
ter quality [17]. Other typical constituents limiting the rate
of litter degradation are the initial tissue N, and P or lignin
concentrations (including the lignin:N or N:P ratios) [18,
19]. For instance, litter with a high N concentration decays
faster than litter with a low N concentration under equal
lignin content [20]. Lignin is a complex aromatic het-
eropolymer in cell walls, and is one of the litter components
that are most recalcitrant to decomposition [21, 22].
However, specific chemical characteristics are only proxies
for the overall species-driven controls on litter decomposi-
tion rates. Therefore, recent studies have shown that species
identity has a higher explanatory power for litter decompo-
sition rates than litter chemistry parameters [1, 23]. Conifer
species generally have slower decomposition rates due to
lower quality litter (e.g., higher C:N ratios, higher tannins),
while deciduous species have faster decomposition due to
higher quality litter (e.g., lower C:N ratios, lower tannins)
[24, 25].

Environmental gradient studies have been recognized
as powerful tools for exploring and quantifying the influ-
ence of environmental conditions on ecosystem processes
[3, 26]. In particular, elevation studies have the potential to
provide information on the sensitivity of ecosystem
processes to temperature, although the covariance of tem-
perature with other elevation-dependent variables necessi-
tates caution in interpretation [3]. Furthermore, ecological
field experiments along environmental gradients can enable
discrimination between direct environmental factors and
other site-dependent factors, such as species’ traits and
composition [27, 28]. Sergyemla Mountain is located in the

southeast margin of the Tibetan Plateau, with strong cli-
matic variation along elevation gradients, and clear vertical
zonation of vegetation types. In the present study, three sites
representing three vegetation types along the altitudinal
gradient: mixed conifer and broadleaf forest (MCBF, 3,169
m a.s.l.), sclerophyllous evergreen broadleaf forest (SEBF,
3,453 m a.s.l.), and subalpine dark coniferous forest (SDCF,
3,957 m a.s.l.) were selected to compare the leaf litter
decomposition rates and chemical fractions loss. Because
soil temperature generally decreases with elevation,
decomposition is expected to occur much slower and over
a shorter season at higher altitudes than lower altitudes.
Thus, we hypothesize that the rates of decomposition in the
dark coniferous forest are the lowest, those in the sclero-
phyllous evergreen broadleaf forest are intermediate, and
those in mixed conifer and broadleaf forests are the highest.

Materials and Methods

Study Site

Sergyemla Mountain (29º10′-30º15′N and 93º12′-
95º35′E), which belongs to the joint zone between
Nyainqentanglha Mountain and the Himalayas, is located in
the Gongbu Nature Reserve of Nyingchi County, southeast
Tibet. The mountain stretches from the northwest to the
southeast, forming a large east-west profile, with the south-
west-facing western section winding its way to the
Nyingchi river valley approximately 2,900-3,000 m a.s.l.
and the northeast-facing eastern section cutting along
Lulang River drainage downward to a valley zone as low as
2,100 m a.s.l. Situated in the transition zone between humid
and semi-humid climate regions of southeast Tibet,
Sergyemla Mountain has warmer winters and cooler sum-
mers as a result of the India Ocean monsoon. The mean
annual air temperature which obtained from 30-year records
at a meteorological weather station located at 2,900 m is
8.5ºC, with mean minimal temperature in January of -0.2ºC
and mean maximal temperature in July of 15.5ºC. The aver-
age annual precipitation is approximately 654.1 mm, with
75% of the annual average precipitation occurring from
June to September [29]. Annual sunshine duration lasts
1,150 hours and the highest monthly duration is 152 hours
in December. The annual relative humidity is 79% [30]. 

As a vital part of the Nyingchi Forest area, Sergyemla
Mountain is a region with high biodiversity. In this study,
three typical forests were selected at altitudes of 3,169,
3,453, and 3,957 m along the east slope of Sergyemla
Mountain to determine the leaf litter decomposition rates
and chemical fraction losses. At the 3,169 m site, the forest
is mixed conifer and broadleaf (MCBF), which is dominat-
ed by Pinus armandi Franch., Quercus aquifolioides Rehd.
et Wils. and Populus szechuanica Schneid. var. tibetica
Schneid. At the 3,453 m site, the forest is sclerophyllous
evergreen broadleaf forest (SEBF), which is dominated by
Quercus aquifolioides Rehd. et Wils. And at the 3,957 m
site the forest is subalpine dark coniferous forest (SDCF),
which is dominated by Abies georgei var. smithii (Table 1).
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Experimental Design

To analyze leaf litter decomposition rates and nutrient
loss, three experimental sites were established at three ele-
vation zones. The leaf litter material used in the decomposi-
tion experiment was collected from the same site where it
had been formed. Fresh leaves were collected from each
study site in September 2008, and were oven-dried at 40ºC
to a constant weight in the laboratory. A sample of 10 g dried
litter were placed in nylon mesh bags (20×20 cm) of 1 mm
mesh with the edges sealed. After the removal of newly fall-
en litter on the forest floor, 200 replicate litterbags were
equitably placed in five plots at each altitudinal gradient site
in October 2008. In total, 600 sample bags (40 replicates ×
5 plots × 3sites) were placed for this study. The plots (10 ×10
m) were fenced to exclude wild animals and all plots were
located within a radius of approximately 2 km. In addition,
the initial carbon and nutrients in litter samples of each study
site were determined in September 2008. At each site, air
and soil temperatures at 0 cm, 5 cm, and 10 cm depths were
automatically monitored by a soil thermometer (DS1921G-
F5#, Maxim Integrated Products, Dallas Semiconductor
Inc., Sunnyvale, California) every 2 hrs.

Litter bags were collected every three months from
December 2008 to December 2010. At each collection
time, 10 litter bags were harvested at five selected plots.
Bags were brushed to remove plants, arthropods, and sand.
Collected litter bags were oven-dried at 65ºC to a constant
weight in the laboratory and the remaining weight of leaf-
litter was determined for mass loss. The remaining leaf lit-
ter from five plots of each site was then mixed and ground
to pass through a 0.5-mm screen, and used for the analyses
of total carbon, total nitrogen, total phosphorus, carbohy-
drate, lignin, and cellulose contents. 

Litter Chemical Analysis

Carbon and nutrients in litter samples were determined
as described by Lu [31] and Zhang [32]. Total organic car-
bon was determined by using the dichromate oxidation-sul-
phateferrous titration method. Total N was determined by
the micro-Kjeldahl method after digesting the subsamples
in K2Cr2O7-H2SO4. Samples of P were acid digested with an
H2SO4 and H2O2 solution. The digested solution was then
transferred to a 100-ml volumetric flask, rationed, and
stored for measurement of the P content. Total P was deter-
mined by the phosphomolybdenum-yellow colorimetry
method. Carbohydrate was determined by the anthrone col-

orimetric method [33]. The lignin and cellulose concentra-
tions were determined using acid-detergent fibre methods
[34].

Calculations and Statistical Analysis

The constant potential mass loss over time for each site
was calculated by the following exponential equation (Eq.
1) [35]:

(1)

...where x0 is the original mass of a litter sample, xt is the
amount of litter remaining after time t, and k is the litter
decomposition coefficient (month-1). One-way ANOVA
was used to test the differences in the percentage of litter
mass and chemical fraction loss among three different veg-
etation types along the altitudinal gradient, and a least sig-
nificant difference (LSD) test was used to distinguish sig-
nificant differences at p = 0.05. Relationships between the
litter mass loss and chemical fraction contents, air, and soil
temperatures were tested using Pearson correlation analy-
sis. All analyses were performed using the SPSS 11.5 sta-
tistical software package (SPSS Inc., USA).

Results

Litter Decomposition Rates

In general, the leaf litter mass loss followed the same
pattern for the three different vegetation types along the ele-
vation gradient (Fig. 1). The mass losses were rapid for the
first six months of decomposition in the field, and then the
mass were lost gradually from June 2009 to the end of the
decomposition period. When the three different vegetation
types were compared, the litter decomposition rate of the
MCBF was the fastest, the litter decomposition rate of the
SEBF was intermediate, and that of the SDCF was the
slowest. The leaf litter decomposition coefficient (k values,
month-1) during the 24-month decomposition period of the
MCBF site was 1.7 and 2.2 times greater than that of the
SEBF and SDCF sites, respectively (Table 2). 

Chemical Fraction Contents

During the 24-month decomposition experiment, the
contents of C and other chemical fractions varied among
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Table 1. Summary of site characteristics, with soil property data for the organic layer. 

Vegetation type Lat (N) Long (E)
Elevation 
(m a.s.l.)

Soil organic C
(g·kg-1)

Soil total N 
(g·kg-1)

Soil C:N

MCBF 29º48′55′′ 94º44′20′′ 3,169 74.38 1.38 53.90

SEBF 29º43′12′′ 94º43′51′′ 3,453 53.61 0.97 55.27

SDCF 29º38′57′′ 94º42′52′′ 3,957 54.16 1.34 40.42

MCBF – mixed conifer and broadleaf forest, SEBF – sclerophyllous evergreen broadleaf forest, SDCF – subalpine dark coniferous forest 



the different vegetation types, and the magnitude of varia-
tion was different among the chemical fractions (Fig. 2).
The dynamics of C content during the experiment were dif-
ferent between the MCBF, SEBF, and SDCF. In the initial
stages of the experiment, the litter C content of all three
vegetation types slightly increased, but then the C content
of the MCBF and SEBF continued to increase, while that of
the SDCF decreased. The P and cellulose content generally
showed an increasing trend during the 24-month decompo-
sition period, but the carbohydrate content generally
showed a decreasing trend. N, lignin content, and the
lignin:N ratio increased during the initial stages and then
decreased. In contrast, the C:N, C:P, and N:P ratios
decreased during the initial stages and then slightly
increased.

Litter Mass and Chemical Fraction Loss

Over the 24-month decomposition period, 62.3% of the
litter mass at the MCBF site, 48.2% of the litter mass at the
SEBF site, and 35.6% of the litter mass at the SDCF site
were lost, respectively (Fig. 3). Statistical analyses revealed
that the litter loss was significantly different among the
three different vegetation types. The lost chemical fraction
accounted for 60.4% of the C, 49.7% of the N, 32.2% of the
P, 74.9% of the lignin, 63.6% of the cellulose, and 89.4% of
the carbohydrate of the MCBF in 24-month net loss rates.
Comparatively, the lost chemical fraction accounted for
48.0% of the C, 39.0% of the N, 37.9% of the P, 41.6% of
the lignin, 49.8% of the cellulose, and 95.1% of the carbo-

hydrate of the SEBF, and the lost chemical fraction account-
ed for 29.9% of the C, 21.2% of the N, 3.7% of the P, 52.4%
of the lignin, 2.4% of the cellulose, and 96.8% of the car-
bohydrate of the SDCF. The results from one-way ANOVA
demonstrated that the chemical fraction loss was also sig-
nificantly different among the three different vegetation
types along the elevation gradient.

Discussion

Litter Decomposition 
along the Altitudinal Gradient

The results of the present study supported our hypothe-
sis that the rates of decomposition are highest in the MCBF
(3,169 m a.s.l.), intermediate in the SEBF (3,453 m a.s.l.),
and lowest in the SDCF (3,957 m a.s.l.). The average leaf
litter decomposition coefficient during the 24-month
decomposition period in the MCBF, SEBF, and SDCF sites
were 0.04, 0.03, and 0.02 month-1, respectively. After the
24-month decomposition period, the lost litter mass
accounted for 62.3% of the MCBF, 48.2% of the SEBF, and
35.6% of the SDCF, respectively. This result is in agree-
ment with previous reports that found that litter decompo-
sition decreases as the elevation increases [36, 37]. For
instance, the leaf litter decomposition rates were subtropi-
cal evergreen broadleaf forest (500 m a.s.l.) > temperate
coniferous forest (1,150 m a.s.l.) > cold temperate dwarf
forest (1,750 m a.s.l.) > and frigid zone alpine meadow
(2,150 m a.s.l.) in the Wuyi Mountains in southeastern
China [38]. Similarly, the litter decomposition rates of the
wet forest (350 to 400 m a.s.l.) and the cloud forest (1,051
m a.s.l.) of the Luquillo Mountains in northeastern Puerto
Rico were 1.12 and 0.70 year-1, respectively [37]. These
data are also similar to the latitudinal decomposition rule of
tropics > subtropics > temperate zone > cold temperate
zone > frigid zone [39].

Climate exerts an important influence on decomposition
in hierarchical models of decomposition and climatic effects
on decomposition at large scales are apparent from the rela-
tionship between actual evaportranspiration and decomposi-
tion rates [10, 38]. In alpine and subalpine areas, as altitude
increases the climate shifts toward more stressful conditions
for plant growth and organic matter decomposition: lower
mean temperatures, higher precipitation, longer snow cover
and, thus, a shorter growing season, lower atmospheric pres-
sure, and higher solar radiation [27]. On the whole, the air
temperature declines with increasing elevation on
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Table 2. Decomposition coefficients (k values, month-1) of the three litters during the 24-month litter decomposition. 

Vegetation type Site k r2 P

MCBF 3,169 m 0.0422 0.9453 < 0.0001

SEBF 3,453 m 0.0253 0.9260 < 0.0001

SDCF 3,957 m 0.0195 0.8596 0.0002

MCBF – mixed conifer and broadleaf forest, SEBF – sclerophyllous evergreen broadleaf forest, SDCF – subalpine dark coniferous forest 

Fig. 1. The remaining leaf litter mass during the decomposition
process of three subalpine forests on Sergyemla Mountain.
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Fig. 2. Variations in the C, N, P, lignin, cellulose, and carbohydrate contents and the C:N, C:P, lignin:N, and N:P ratios during the
decomposition process of three subalpine forests on Sergyemla Mountain.
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Sergyemla Mountain. The average air temperature during
the 24-month decomposition period was 5.98ºC at the
MCBF site, which was 20.3% and 65.4% higher than that of
the SDBF site (4.97ºC) and the SDEF site (3.62ºC), respec-
tively. The soil temperatures at these three sites showed a
similar pattern. The average soil temperature of the MCBF
site, which were 6.99, 6.87, and 6.77ºC at 0, 5, and 10 cm,
respectively, were the highest, those of the SEBF site, which
were 5.30, 5.59, and 5.63ºC at 0, 5, and 10 cm, were inter-
mediate, and those of the SDEF site which were 3.01, 3.63,
and 3.82ºC at 0, 5, and 10 cm, were the lowest among the
three different altitudinal gradients.

The positive relationships between the litter mass loss
and temperature along the elevation gradient were found in
the present study. The percentages of litter mass loss
increased significantly with increasing air temperature (r =
0.39, p = 0.04), 0 cm soil temperature (r = 0.44, p = 0.02),
5 cm soil temperature (r = 0.43, p = 0.03), and 10 cm soil
temperature (r = 0.43, p = 0.03) in the subalpine forest
ecosystem on Sergyemla Mountain (Fig. 4). Hence, the
hypothesis was that decomposition occurred much slower
and over a shorter season at higher altitudes than lower alti-
tudes due to the generally decreasing soil temperature with
elevation. This hypothesis turned out to be right because lit-
ter decomposition rates were significantly correlated with
soil temperature. These correlations are consistent with
studies that also found that litter decomposition decreases
as air temperature falls along elevation gradients [3]. 

The data that litter mass loss increased with increasing
temperature indicate that climatic constraints are the
strongest regulators of decomposition. For instance, soil
temperature can explain 95% of the variation in the decom-
position rate along an elevation gradient in Peruvian forests
[3]. Litter decomposition is an ecological process governed
by decomposer organisms, such as soil fauna and microor-

ganisms. Hence, the increase in soil temperature is likely to
stimulate litter decomposition by creating conditions favor-
able for decomposer populations and activity [5, 40]. Soil
moisture was not measured in the present study; however,
decomposition in the lower elevation was limited by mois-
ture and soil moisture, rather than temperature, which
appears to be the primary factor that controls decomposi-
tion rates reported in previous studies [41, 42]. Hence, it
would be necessary to determine soil moisture for future
research because some alpine regions are currently showing
a spatially consistent warming, but spatial variability in
changing precipitation [43]. 

Litter Decomposition and Chemical Fraction

Climate is the most important regulator of litter decom-
position, but when climate conditions are similar or maxi-
mize potential decomposition, litter quality controls are
enhanced [4]. Litter quality, especially the chemical charac-
teristics of the organic constituents, is of particular impor-
tance for the mass loss and dynamics of limiting nutrients
during decomposition [16]. In general, in the initial stages
of decomposition, soluble components disappear quickly,
and non-lignified carbohydrates are also degraded [44, 45].
Nevertheless, almost no decomposition of lignified carbo-
hydrates and lignin occurs, and results in the increase of
concentrations of recalcitrant materials and some nutrients
[16, 46]. In the later stages of decomposition, the contents
of lignin, N, and P increase linearly with accumulated mass
loss, but the absolute amounts of N and P start to decrease
at some point after the onset of lignin disappearance [7, 40]. 

This study demonstrated that the concentrations of the
chemical fractions of the litter varied among different veg-
etation types and among different stages of decomposition
during the course of leaf litter decomposition in subalpine
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Fig. 3. Percentages of litter mass, C, N, P, lignin, cellulose and carbohydrate net loss after the 24-month litter decomposition process
of three subalpine forests on Sergyemla Mountain. Different letters denote significant differences among different forest vegetation
types, P < 0.05.

P
er

ce
nt

ag
e 

of
 l

os
s 

(%
)

litter mass lignin cellulose carbohydrateC N P

Litter mass chemical fractions



forests in Sergyemla Mountain (Fig. 2). The C content of
the litter slightly increased at the initial stage and then fluc-
tuated at the later stage. Because C is the element that pre-
dominantly contributes to the weight loss of the leaf litter
[16], the loss of C over the course of the experiment was
similar to the loss of litter mass (Fig. 3). N and P have long
been recognized as the most limiting nutrients that regulate
plant growth and net primary productivity in terrestrial
ecosystems, especially in alpine and arctic ecosystems,
where the mineralization is slow due to low temperatures
[47, 48]. The immobilization of N and P often occurs dur-
ing litter decomposition, and the amount of these nutrients
in fresh litters is frequently insufficient for decomposer
organisms in temperate and tropical regions [21, 49]. The
patterns of the changes of the N and P content found here
were generally consistent with previous works [50-52], as
the N and P contents in the later stages of decomposition
were higher than the initial content values. Lignin has tra-
ditionally been combined with N to predict long-term
decomposition patterns across biomes, because N concen-
trations have been found to be more important during early
decomposition, while lignin is more important during later
stages [5]. Lignin can also be associated with other poly-
mers such as cellulose and hemicellulose, which constitute
the complex cell wall that decomposes slowly [53]. In the

present study, the lignin content increased during the initial
decomposition stage and then decreased, whereas the cellu-
lose content generally exhibited a slightly increasing trend
in the three subalpine forests. Carbohydrate is a relatively
labile decomposition component of litter [8, 46], thus the
carbohydrate content declined rapidly in the early stage of
litter decomposition.

The concentrations of N, P, lignin, and cellulose, as well
as the ratios of C to N, C to P, N to P, and lignin to N, are
common indicators of litter quality. Of the above indicators,
the ratio of C:N and lignin:N can well reflect the decompo-
sition rate in various ecosystems [54, 55]. N is well known
to affect the decomposition rate of individual litter types [7,
13], and P may be also important factor, especially in P lim-
iting ecosystems [46, 56], in early phase of decomposition,
the decomposition rate largely depends on initial litter N
concentrations, and in later stages the concentration of
lignin or the ratio of lignin to N becomes the determining
factor [57, 58]. The litter mass loss were significant positive
correlation with N and P contents during a 24-month
decomposition period at the MCBF site, but significantly
negatively correlated with C:P, N:P and lignin:N (Table 3).
This finding is grossly consistent with other studies of litter
decomposition [17, 59, 60]. Meanwhile, the litter mass loss
at the SEBF site was not significantly correlative with
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Fig. 4. Relationships between the percentages of litter mass loss and air (a), soil 0 cm (b), soil 5 cm (c), and soil 10 cm (d) tempera-
tures of subalpine forests on the east slope of Sergyemla Mountain. 
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chemical fraction contents of the litter, while the litter mass
loss at the SDCF site only significantly positively correlat-
ed with the cellulose and P content (Table 3). The absence
of a statistically significant relationship between litter mass
loss and litter quality at high altitudes on Sergyemla
Mountain mays be because that it is climate, not litter qual-
ity, that control the litter decomposition process because of
the low temperatures limiting in high elevations.

Conclusions

These observations of leaf litter decomposition in three
subalpine forests along an elevation gradient on the east
slope of Sergyemla Mountain demonstrated that the decom-
position rate decreased as elevation increased. The concen-
trations of the chemical fractions of the litter varied among
different vegetation types and among different stages of
decomposition during the course of leaf-litter decomposi-
tion. The correlation analysis determined that there was a
significant positive relationship between the litter mass loss
and the average air and soil temperature along the elevation
gradient. To a certain extent, the litter mass loss at the
MCBF site (3,169 m a.s.l.) significantly correlated with lit-
ter quality, including the N and P contents and the C:P ratio,
and so on. However, the litter mass losses at the SEBF
(3,453 m a.s.l.) and the SDCF (3,957 m a.s.l.) sites were
mainly not significantly correlative with litter quality.
These results indicate that climate plays a critical role in
leaf litter decomposition across environmental gradients,
but litter quality also can partly explain the higher leaf litter
decomposition in low elevation forests on the east slope of
Sergyemla Mountain.
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